WEEX 唯客博客, 原文标题:《Understanding the Intersection of Crypto and AI》原文作者:Lucas Tcheyan原文编译:律动小工,BlockBeats 目录 介绍 核心观点术语解释 人工智能+加密货币全景图 去中心化计算 概述去中心化计算垂直领域通用计算二级市场去中心化机器学习训练去中心化通用人工智能构建用于AI 模型的去中心化计算堆栈其他去中心化产品 展望 智能合约与零知识机器学习(zkML) 零知识机器学习(zkML)基础设施与工具协处理器应用展望 人工智能代理 代理提供商比特币和人工智能代理展望 结论 介绍 区块链的出现可以说是计算机科学历史上最重要的进步之一。同时人工智能的发展将会,而且已经在我们的世界产生深远影响。如果说区块链技术提供了一种新的交易结算、数据存储和系统设计范例,人工智能则是计算、分析和内容生产的革命。这两个行业的创新正在解锁新的用例,这些用例可能会在未来几年加速两者的应用落地。本报告探讨了加密货币和人工智能的集成,重点关注试图弥合两者之间差别、利用两者力量的新用例。具体而言,本报告研究了去中心化计算协议、零知识机器学习(zkML)基础设施和人工智能代理的项目。 加密货币为人工智能提供了一个无需许可、无需信任、可组合的结算层。这解锁了更多用例,例如通过去中心化计算系统使硬件更容易获得,构建可以执行需要价值交换的复杂任务的人工智能代理,以及开发身份和来源解决方案来对抗女巫攻击和深伪技术(Deepfake)。人工智能为加密货币带来了许多好处,正如已经在 Web 2 中看到的那样。这包括通过大型语言模型(例如 ChatGPT 和 Copilot 的专门训练版本)增强了用户和开发者的用户体验(UX),以及显著提高智能合约功能和自动化的潜力。区块链是人工智能所需要的透明、数据丰富的环境。但区块链的计算能力也受到了限制,这是直接集成人工智能模型的主要障碍。 加密货币和人工智能的交叉点正在进行的实验和最终采用背后的驱动力,正是推动加密货币许多最有前景的用例的驱动力——一个无需许可、无需信任的协调层,更好地促进价值转移。鉴于其巨大潜力,该领域的参与者需要理解这两种技术相交的基本方式。 核心观点: 在不久的将来(6 个月到 1 年),加密货币和人工智能的集成将由人工智能应用程序主导,这些应用程序可以提高开发者的效率、智能合约的可审查性和安全性以及用户的可使用性。这些集成并非特定于加密货币,而是增强了链上开发者和用户的体验。 正如高性能 GPU 严重短缺一样,去中心化计算产品正在发展人工智能定制的 GPU 产品,这为其采用提供了有力支持。 用户体验和监管仍然是去中心化计算客户的障碍。然而,最近 OpenAI 的发展以及美国正在进行的监管审查突显了无需许可、抗审查、去中心化人工智能网络的价值主张。 链上人工智能整合,特别是能够使用人工智能模型的智能合约,需要改进 zkML 技术和其他验证链下计算的计算方法。缺乏全面的工具和开发人才以及高昂的成本是采用的障碍。 人工智能代理非常适合加密货币,用户(或代理本身)可以创建钱包以与其他服务、代理或个人进行交易。这在传统金融渠道下目前不可能实现。为了更广泛的采用,需要与非加密产品进行额外的集成。 术语解释: 人工智能(Artificial Intelligence)是利用计算和机器模仿人类的推理和问题解决能力。 神经网络(Neural Networks)是一种用于 AI 模型的训练方法。它们通过一系列算法层处理输入数据,不断优化直到产生所需的输出。神经网络由具有可修改权重的方程组成,可以修改权重以改变输出。它们可能需要大量的数据和计算来进行训练,以确保其输出准确。这是开发 AI 模型最常见的方式之一(例如,ChatGPT 使用基于 Transformer 的神经网络过程)。 训练(Training)是神经网络和其他 AI 模型开发的过程。它需要大量的数据来训练模型,以正确地解释输入并产生准确的输出。在训练过程中,模型方程的权重将不断修改,直到产生令人满意的输出为止。训练成本可能非常昂贵。例如,ChatGPT 使用数以万计的 GPU 来处理其数据。资源较少的团队通常依赖于像亚马逊网络服务(Amazon Web Services)、Azure 和谷歌云服务(Google Cloud Providers)等专用计算提供商。 推理(Inference)是实际使用 AI 模型获取输出或结果的过程(例如,使用 ChatGPT 撰写本报告大纲)。推理在训练过程中和最终产品中都会用到。由于计算成本的原因,即使在训练完成后,它们的运行成本也可能很高,但计算密集度低于训练。 零知识证明(Zero Knowledge Proofs,ZKP)允许在不透露基础信息的情况下验证声明。这在加密货币中有两个主要用途:1 隐私和 2 扩展性。对于隐私,这使用户能够进行交易而不泄露像钱包中有多少 ETH 这样的敏感信息。对于扩展性,它使得可以更快地在链上证明链下计算,而无需重新执行计算。这使得区块链和应用程序可以在链下运行计算,然后在链上进行验证。 人工智能+加密货币全景图 在人工智能和加密货币交汇的项目仍在开发所需的基础设施,以支持大规模的链上人工智能交互。 去中心化计算市场正在兴起,以提供大量的物理硬件,主要是GPU,用于训练和推理人工智能模型。这些双边市场连接了出租和寻求租用计算资源的人,促进了价值的转移和计算的验证。在去中心化计算中,正在出现几个子类别,提供了额外的功能。除了双边市场之外,本报告还将研究专门为可验证训练和微调输出的机器学习训练提供方,以及致力于连接计算和模型生成以实现人工通用智能的项目,也经常被称为智能激励网络。 zkML 是希望以经济有效且及时的方式在链上提供可验证模型输出的一个重点领域。这些项目主要使应用程序能够处理链下繁重的计算请求,然后在链上发布可验证的输出,证明链下工作是完整且准确的。zkML 在当前实例中既昂贵又耗时,但越来越多地被用作解决方案。这在 zkML 提供方和想要利用 AI 模型的 DeFi/游戏之间的集成数量不断增加中显而易见。 充足的计算资源供应以及能够在链上验证计算的能力为链上人工智能代理打开了大门。代理是经过训练的模型,能够代表用户执行请求。代理提供了极大的机会来显著增强链上体验,使用户能够通过与聊天机器人交谈来执行复杂的交易。然而,就目前而言,代理项目仍集中于开发基础设施和工具,以便轻松快速地部署。 去中心化计算 概述 人工智能需要大量的计算资源,无论是用于训练模型还是进行推理。在过去的十年里,随着模型变得越来越复杂,计算需求呈指数级增长。例如,OpenAI 发现,在 2012 年至 2018 年间,其模型的计算需求从每两年翻倍增长到每三个半月翻倍增长。这导致了对 GPU 的需求激增,一些加密货币矿工甚至利用他们的 GPU 提供云计算服务。随着获取计算资源的竞争加剧和成本上涨,一些项目正在利用加密货币提供去中心化计算解决方案。它们以有竞争力的价格提供按需计算,以便团队可以负担得起训练和运行模型。在某些情况下,这种权衡可能是性能和安全性。 像 Nvidia 生产的最先进的 GPU 等高端硬件需求很高。在 9 月份,Tether 收购了德国比特币矿工 Northern Data 的股份,据报道支付了 4.2 亿美元,以收购 1 万个 H100 GPU(用于 AI 训练的最先进的 GPU 之一)。获得最佳硬件的等待时间至少为六个月,在许多情况下更长。更糟糕的是,公司通常需要签订长期合同,购买他们甚至可能不会使用的计算资源。这可能导致存在计算资源,但市场上却不可用的情况。去中心化计算系统有助于解决这些市场效率低下的问题,创建了一个二级市场,使计算资源的所有者能够随时以竞争价格出租他们的多余资源,释放新的供应。 除了竞争性定价和易获取性外,去中心化计算的关键价值是抗审查性。前沿的人工智能发展越来越被拥有无与伦比算力和数据获取权限的大型科技公司所主导。2023 年 AI 指数报告年度报告中首次突出的关键主题之一是,行业正在超越学术界,在 AI 模型的开发方面,将控制权集中在少数科技领导者手中。这引发了对他们能否在制定支撑 AI 模型的规范和价值观方面产生过大影响的担忧,尤其是在这些科技公司推动监管措施以限制他们无法控制的 AI 开发之后。 去中心化计算垂直领域 近年来出现了几种去中心化计算模型,每种模型都有自己的重点和取舍。 通用计算 类似 Akash、io.net、iExec、Cudos 等项目是去中心化计算应用,除了数据和通用计算解决方案外,还提供或将很快提供专门用于 AI 训练和推理的特定计算资源。 Akash 目前是唯一完全开源的「超级云」平台。它是一个使用 Cosmos SDK 的PoS网络。Akash 的原生代币 AKT 用于保护网络、作为支付形式,并激励参与。Akash 于 2020 年推出了首个主网,重点是提供一个无需许可的云计算市场,最初提供存储和 CPU 租赁服务。在 2023 年 6 月,Akash 推出了一个新的测试网,专注于 GPU,9 月推出了 GPU 主网,使用户能够租用 GPU 进行 AI 训练和推理。 Akash 生态系统中有两个主要角色 – 租户和提供者。租户是 Akash 网络的用户,他们想购买计算资源。提供者是计算资源提供方。为了匹配租户和提供者,Akash 依赖于一个逆向拍卖过程。租户提交他们的计算需求,在其中可以指定某些条件,比如服务器的位置或进行计算的硬件类型,以及他们愿意支付的金额。然后,提供者提交他们的要价,最低出价者获得任务。 Akash 验证者维护网络的完整性。验证者集目前限制为 100 个,计划随着时间逐步增加。任何人都可以通过质押比当前质押金额最少的验证者更多的 AKT 来成为验证者。AKT 持有者也可以将他们的 AKT 委托给验证者。网络的交易费用和区块奖励以 AKT 形式分配。此外,对于每笔租赁,Akash 网络都会以由社区确定的比率收取「手续费」,并分配给 AKT 持有者。 二级市场 去中心化计算市场旨在填补现有计算市场的低效。供应限制导致公司储备了超出他们可能需要的计算资源,而且由于与云服务提供商的合同形式,供应进一步受到限制。即使可能不需要持续使用,这些客户也被锁定在长期合同中。去中心化计算平台释放了新的供应,使全球任何需要的计算资源的人都可以成为提供方。 目前尚不清楚,对用于 AI 训练的 GPU 的需求激增是否会转化为 Akash 网络的长期使用量。长期以来,Akash 一直为 CPU 提供了一个市场,例如,以 70-80% 的折扣提供类似于中心化替代方案的服务。然而,更低的价格并没有导致显著的采用。网络上的租赁活动已经趋于平缓,2023 年第二季度的平均计算资源利用率仅为 33%,内存利用率为 16%,存储利用率为 13%。尽管这些对于链上采用来说是令人印象深刻的指标(作为参考,领先的存储提供商 Filecoin 在 2023 年第三季度的存储利用率为 12.6%),但这表明供应继续超过对这些产品的需求。 距离 Akash 推出 GPU 网络仅推出半年多的时间,现在准确衡量其长期采用率还为时过早。作为需求的标志,迄今为止 GPU 的平均利用率为 44%,高于 CPU、内存和存储。这主要是由对最高质量 GPU(如 A100s)的需求推动的,超过 90% 的高质量 GPU 已出租。 Akash 的每日支出也有所增加,相对于 GPU 出现之前几乎翻了一番。这部分归因于其他服务使用量的增加,尤其是 CPU,但主要还是新 GPU 导致的。 定价与 Lambda Cloud 和 Vast.ai 等中心化竞争对手相当(或者在某些情况下甚至更贵)。对最高端 GPU(例如 H100 和 A100)的巨大需求意味着该设备的大多数所有者对在面临竞争性定价的市场上市兴趣不大。 尽管初期令人欣喜,但采用仍然存在障碍(下文将进一步讨论)。去中心化计算网络需要采取更多措施来创造需求和供应,团队正在尝试如何更好地吸引新用户。例如,在 2024 年初,Akash 通过了提案 240,以增加 GPU 提供方的 AKT 释放,并激励更多的供应,具体针对高端 GPU。团队还致力于推出概念验证模型,向潜在用户展示其网络的实时能力。Akash 正在训练他们自己的基础模型,并已经推出了使用 Akash GPU 生成输出的聊天机器人和图像生成产品。类似地,io.net 已经开发了稳定的扩散模型,并正在推出新的网络功能,以更好地模拟传统 GPU 数据中心的性能和规模。 去中心化机器学习训练 除了可以满足人工智能需求的通用计算平台外,还出现了一系列专注于机器学习模型训练的专用 AI GPU 提供方。例如,Gensyn 正在「协调电力和硬件来构建集体智慧」,认为「如果有人想训练某些东西,而有人愿意训练它,那么应该允许进行训练。」 该协议有四个主要角色:提交者、求解者、验证者和举报者。提交者向网络提交带有训练请求的任务。这些任务包括训练目标、要训练的模型和训练数据。作为提交过程的一部分,提交者预先支付一笔费用,以支付求解者估计的计算成本。 一旦提交,任务将分配给求解者,他们将进行模型的实际训练。然后,求解者将完成的任务提交给验证者,验证者负责检查训练是否正确完成。举报者负责确保验证者诚实行事。为了激励举报者参与网络,Gensyn 计划定期提供有意错误的证明,以奖励举报者抓住它们。 除了为人工智能相关工作提供计算之外,Gensyn 的关键价值是其验证系统,该系统仍在开发中。验证是必要的,以确保 GPU 提供方进行的外部计算是正确的(即确保用户的模型被训练成他们想要的方式)。Gensyn 采用一种独特的方法解决了这个问题,利用称为「概率学习证明、基于图的定位协议和 Truebit 风格的激励游戏」的新型验证方法。这是一种乐观求解模式,使验证者能够确认求解者已正确运行模型,而无需完全重新运行它们,这是一种昂贵且低效的过程。 除了其创新的验证方法外,Gensyn 还声称相对于中心化替代方案和加密竞争对手来说具有成本效益 – 提供的 ML 训练比 AWS 便宜高达 80%,同时在测试中胜过类似项目 Truebit。 这些初步结果能否在去中心化网络中规模化复制,还有待观察。Gensyn 希望利用来自提供方(如小型数据中心、普通用户,甚至将来的小型移动设备,如手机)的多余计算资源。然而,正如 Gensyn 团队自己承认的,依赖异构计算提供方会引入几个新挑战。 对于像谷歌云和 Coreweave 这样的中心化提供方来说,计算是昂贵的,而计算之间的通信(带宽和延迟)是便宜的。这些系统旨在尽快实现硬件之间的通信。Gensyn 颠覆了这种框架,通过使世界上任何人都能够提供 GPU 来降低计算成本,但由于网络现在必须在去中心化的、位于遥远地方的异构硬件之间协调计算作业,从而增加了通信成本。Gensyn 尚未推出,但它证明了在构建去中心化机器学习训练协议时可能发生的事情。 去中心化通用人工智能 去中心化计算平台还为人工智能创建方法的设计可能性打开了大门。Bittensor 是一个建立在 Substrate 上的去中心化计算协议,试图回答「我们如何将人工智能转变为协作方式」的问题。Bittensor 旨在将人工智能生成去中心化和商品化。该协议于 2021 年推出,旨在利用协作式机器学习模型的力量,不断迭代和产生更好的人工智能。 Bittensor 从比特币中汲取灵感,其原生货币 TAO 的供应量为二千一百万,有一个四年的减半周期(首次减半将在 2025 年)。与使用工作量证明来生成正确的随机数并获得区块奖励不同,Bittensor 依赖于「智能证明(Proof of Intelligence)」,要求矿工运行能够对推理请求产生输出的模型。 智能激励网络 Bittensor 最初依赖混合专家(MoE)模型来生成输出。当推理请求被提交时,MoE 模型不是依赖于一个通用模型,而是将推理请求传递给针对特定输入类型最准确的模型。可以将其类比为建造房屋时,雇用各种专家来处理建造过程的不同方面(例如:建筑师、工程师、画家、建筑工人等…)。MoE 将其应用于机器学习模型,尝试根据输入利用不同模型的输出。正如 Bittensor 创始人 Ala Shaabana 所解释的那样,这就像「与一群聪明人,而不是与一个人交谈,以得到最好的答案」。由于确保正确路由、将消息同步到正确模型以及激励的挑战,这种方法已经被搁置,直到项目更为发展成熟。 Bittensor 网络中有两个主要角色:验证者和矿工。验证者负责向矿工发送推理请求,审查他们的输出,并根据其响应的质量对其进行排名。为了确保其排名可靠,验证者根据其排名与其他验证者排名的一致程度被赋予「vtrust」分数。验证者的 vtrust 分数越高,他们就能够获得更多的 TAO。这旨在鼓励验证者随着时间的推移就模型排名达成共识,因为达成对模型排名的共识的验证者越多,他们个人的 vtrust 分数就越高。 矿工,也称为服务器,是运行实际机器学习模型的网络参与者。矿工之间竞争,为给定查询提供最准确的输出,输出越准确,他们获得的 TAO 发行就越多。矿工可以以任何他们想要的方式生成这些输出。例如,在未来的场景中,一个 Bittensor 矿工完全可能事先在 Gensyn 上对模型进行训练,然后将其用于赚取 TAO。 如今大多数交互直接发生在验证者和矿工之间。验证者向矿工提交输入并请求输出(即对模型进行训练)。一旦验证者向网络中的矿工查询并收到他们的响应,然后他们对验证者进行排名并将其排名提交给网络。 验证者(依赖 PoS)和矿工(依赖 Proof of Model,一种 PoW 形式)之间的这种交互被称为 Yuma 共识。它旨在鼓励矿工产生最佳输出以赚取 TAO,以及鼓励验证者准确对矿工输出进行排名,以赚取更高的 vtrust 分数并增加他们的 TAO 奖励,形成网络的共识机制。 子网及应用 上文提到,Bittensor 上的交互主要包括验证者向矿工提交请求并评估其输出。然而,随着贡献矿工的质量提高和网络整体人工智能的增长,Bittensor 将在其现有堆栈之上创建一个应用程序层,使开发者能够构建查询 Bittensor 网络的应用程序。 在 2023 年 10 月,通过其 Revolution 升级,Bittensor 完成了朝着实现这一目标迈出的重要一步,引入了子网。子网是 Bittensor 上的个独立网络,激励特定行为。Revolution 将网络开放给任何有兴趣创建子网的人。自发布以来的几个月里,已经推出了超过 32 个子网,包括用于文本提示、数据抓取、图像生成和存储等领域的子网。随着子网的成熟和产品准备就绪,子网创建者还将创建应用程序集成,使团队能够构建查询特定子网的应用程序。一些应用程序(聊天机器人、图像生成器、推特回复机器人、预测市场)今天已经存在,但除了 Bittensor 基金会的拨款之外,验证者没有正式激励来接受和转发这些查询。 为了提供更清晰的说明,下图是 Bittensor 集成应用程序后可能运行的示例。 子网根据根网…